Novel Hydraulic and Aerodynamic Schemes of Coil Type Steam Generator: A Mathematical Model and Experimental Data

Author:

Kuskarbekova Sulpan,Osintsev KonstantinORCID,Aliukov SergeiORCID

Abstract

Direct-flow steam boilers of the coil type are simple structures in which rather complex processes take place. To study this area, an educational laboratory stand was designed and constructed, which simulates the operation of a boiler of a similar design. In order to optimize the intensification of heat exchange processes in the device, raise its steam capacity, and improve its efficiency, the stand contains hydraulic and aerodynamic circuits for evaluating the movement of the coolant and air flows in the boiler. The proposed mathematical model gave an idea of the nature of the movement of the coolant in a curved pipe. The model takes into account the parameters of the screw channel for a more accurate result. The model can be used to predict the movement of the coolant in such coils with varying degrees of contamination. When designing a laboratory stand, the need for automated control is taken into account. The use of a controller to regulate the rotation speed of the pump motor made it possible to create a virtual desktop with which it is possible to control, regulate, and save all parameters. The results of the first test of the hydraulic system of the stand showed that the nature of movement in the object under study is turbulent, the critical value of the Reynolds number is higher than the generally accepted one due to the occurrence of additional forces in the curved pipe, and the mathematical model can be corrected by amendments for these forces.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3