Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas

Author:

De Simio LuigiORCID,Iannaccone Sabato,Masi MassimoORCID,Gobbato Paolo

Abstract

The paper deals with the experimental study of a medium-load spark ignition engine under operation with different fuel mixtures among those deemed as promising for the transition towards carbon-free energy systems. In particular, the performance of a non-conventional ignition system, which permits the variation of the ignition energy, the spark intensity and duration, was studied fuelling the engine with 60–40% hydrogen–methane blends, three real syngas mixtures and one biogas. The paper is aimed to find the optimal ignition timing for minimum specific fuel consumption and the best setup of the ignition system for each of the fuel mixtures considered. To this end, a series of steady-state tests were performed at the dynamometer by varying the parameters of the ignition system and running the engine with surrogate hydrogen–methane–nitrogen mixtures that permit the simulation of hydrogen–methane blends, real syngas, and biogas. The results quantify the increase of spark advance associated with the decrease of the fuel quality and discuss the risk of knock onset during methane–hydrogen operation. It was demonstrated that the change of the ignition system parameters does not affect the value of optimum spark advance and, except for the ignition duration, all the parameters’ values are generally not very relevant at full load operation. In contrast, at partial load operation with low-quality syngas or high exhaust gas recirculation rate, it was found that an increase of the maximum ignition energy (to 300 mJ) allows for operation down to approximately 66% of the maximum load before combustion becomes incomplete. Further reductions, down to 25% of the maximum load, can be achieved by increasing the gap between the spark plug electrodes (from 0.25 to 0.5 mm).

Funder

Engine Technology Solutions

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference27 articles.

1. The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system;Danieli;Appl. Energy,2022

2. Available online: https://data.europa.eu/doi/10.2843/341510. Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition, 2022.

3. Performance analysis of a producer gas-fuelled heavy-duty SI engine at full-load operation;Gobbato;Energy Procedia,2015

4. The technical and economic feasibility of biomass gasification for power generation;Bridgwater;Fuel,1995

5. Chapman, K.S., and Patil, A. Technical Report DOE Award DE-FC26-04NT42234. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fuelled with Hydrogen/Natural Gas Blends, 2008.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3