Preventive Maintenance Strategy Optimization in Manufacturing System Considering Energy Efficiency and Quality Cost

Author:

Yang Liang,Liu QinmingORCID,Xia Tangbin,Ye Chunming,Li Jiaxiang

Abstract

Climate change is a serious challenge facing the world today. Countries are already working together to control carbon emissions and mitigate global warming. Improving energy efficiency is currently one of the main carbon reduction measures proposed by the international community. Within this context, improving energy efficiency in manufacturing systems is crucial to achieving green and low-carbon transformation. The aim of this work is to develop a new preventive maintenance strategy model. The novelty of the model is that it takes into account energy efficiency, maintenance cost, product quality, and the impact of recycling defective products on energy efficiency. Based on the relationship between preventive maintenance cost, operating energy consumption, and failure rate, the correlation coefficient is introduced to obtain the variable preventive maintenance cost and variable operating energy consumption. Then, the cost and energy efficiency models are established, respectively, and finally, the Pareto optimal solution is found by the nondominated sorting genetic algorithm II (NSGAII). The results show that the preventive maintenance strategy proposed in this paper is better than the general maintenance strategy and more relevant to the actual situation of manufacturing systems. The scope of the research in this paper can support the decision of making energy savings and emission reductions in the manufacturing industry, which makes the production, maintenance, quality, and architecture of the manufacturing industry optimized.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Humanity and Social Science Planning Foundation of the Ministry of Education of China

Action Plan for Scientific and Technological Innovation of Shanghai Science and Technology Commission

Science and Technology Development Project of University of Shanghai for Technology and Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3