Abstract
This paper introduces a novel machine learning (ML) model for the lightning performance analysis of overhead distribution lines (OHLs), which facilitates a data-centrist and statistical view of the problem. The ML model is a bagging ensemble of support vector machines (SVMs), which introduces two significant features. Firstly, support vectors from the SVMs serve as a scaffolding, and at the same time give rise to the so-called curve of limiting parameters for the line. Secondly, the model itself serves as a foundation for the introduction of the statistical safety factor to the lightning performance analysis of OHLs. Both these aspects bolster an end-to-end statistical approach to the OHL insulation coordination and lightning flashover analysis. Furthermore, the ML paradigm brings the added benefit of learning from a large corpus of data amassed by the lightning location networks and fostering, in the process, a “big data” approach to this important engineering problem. Finally, a relationship between safety factor and risk is elucidated. THe benefits of the proposed approach are demonstrated on a typical medium-voltage OHL.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献