Energy Performance Assessment of a Novel Solar Poly-Generation System Using Various ORC Working Fluids in Residential Buildings

Author:

Almehmadi Fahad AwjahORCID,Elattar H. F.ORCID,Fouda A.,Alqaed SaeedORCID,Mustafa JawedORCID,Alharthi Mathkar A.ORCID,Refaey H. A.ORCID

Abstract

Poly-generation systems are an exciting new technology that provide an alternative to separating existing energy production methods in buildings. A poly-generation system enables the efficient simultaneous production of heating, cooling, fresh water, and electricity, resulting in many technological, economic, energy recovery, and environmental advantages. This study numerically investigates three proposed novel solar-driven poly-generation systems (BS, IS-I, and IS-II) integrated with organic Rankine cycle (ORC), humidification-dehumidification desalination system (HDH), and desiccant cooling system (DCS) with different heat recovery system arrangements. The suggested systems supply residential structures with energy, space conditioning, domestic heating, and fresh water. The effects of system operating circumstances on productivity and performance characteristics and several organic working fluid types (n-octane, R245fa, R113, isopentane, and toluene) on optimum system performance have been investigated. The results show that (i) the average enhancement percentage of TGOR using integrated poly-generation systems over the separated ones is 68.5%, 68.5%, and 95.5% for BS, IS-I, and IS-II systems, respectively; (ii) when comparing the three systems, the IS-I system outperforms the other systems (BS & IS-II); and (iii) the maximum values of W•net, m•fresh, Q•cooling, and Q•heating, obtained for different proposed systems using n-octane are 102 kW (all systems), 214.7 kg/h (IS-II), 29.94 kW (IS-II), and 225.6 kW (IS-I); (iv) R113 has the highest TGOR of 0.6924 (IS-I) compared to other organic fluids. (v) The improvements in Wnet•, mfresh•, Qcooling• and Qheating• with using toluene instead of R113 at tf1 = 40 °C are 177.5%, 105.8%, 389.25%, and 79%, respectively.

Funder

Researchers Supporting Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3