Energy-Efficient Offloading Based on Efficient Cognitive Energy Management Scheme in Edge Computing Device with Energy Optimization

Author:

Kaliappan Vishnu KumarORCID,Lalpet Ranganathan Aravind Babu,Periasamy SelvarajuORCID,Thirumalai Padmapriya,Nguyen Tuan AnhORCID,Jeon SangwooORCID,Min Dugki,Choi Enumi

Abstract

Edge devices and their associated computing techniques require energy efficiency to improve sustainability over time. The operating edge devices are timed to swap between different states to achieve stabilized energy efficiency. This article introduces a Cognitive Energy Management Scheme (CEMS) by considering the offloading and computational states for energy efficacy. The proposed scheme employs state learning for swapping the computing intervals for scheduling or offloading depending on the load. The edge devices are distributed at the time of scheduling and organized for first come, first serve for offloading features. In state learning, the reward is allocated for successful scheduling over offloading to prevent device exhaustion. The computation is therefore swapped for energy-reserved scheduling or offloading based on the previous computed reward. This cognitive management induces device allocation based on energy availability and computing time to prevent energy convergence. Cognitive management is limited in recent works due to non-linear swapping and missing features. The proposed CEMS addresses this issue through precise scheduling and earlier device exhaustion identification. The convergence issue is addressed using rewards assigned to post the state transitions. In the transition process, multiple device energy levels are considered. This consideration prevents early detection of exhaustive devices, unlike conventional wireless networks. The proposed scheme’s performance is compared using the metrics computing rate and time, energy efficacy, offloading ratio, and scheduling failures. The experimental results show that this scheme improves the computing rate and energy efficacy by 7.2% and 9.32%, respectively, for the varying edge devices. It reduces the offloading ratio, scheduling failures, and computing time by 14.97%, 7.27%, and 14.48%, respectively.

Funder

National Research Foundation of Korea

Korea government (Ministry of Science and ICT

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3