Abstract
To address the increasing interest towards more environmentally friendly naval transportation and the introduction of IMO2020 restrictions on pollutant emissions onboard ships, the present work details the preliminary design of a mini gas turbine engine, i.e., a gas turbine engine with an output power up to 5 MW, for onboard energy generation. In comparison to conventional propulsion systems, gas turbine units benefit from known compactness, which can be further enhanced by employing single-stage uncooled radial machines, according to similar works in the field. As such, the present paper aims to set up a complete procedure that allows a reliable and fast (i.e., requiring a limited computational effort) preliminary design of one-stage centrifugal compressors and radial turbines operating at a high pressure ratio via the use of classical one-dimensional theory. The aerodynamic design outputs in terms of forces and torques are then used to perform a preliminary mechanical design of the shaft by means of a one-dimensional finite element model with commercial software to estimate the corresponding shaft line stress. Despite some necessary geometrical and modeling simplification of the design problem, which results in the unavailability of detailed information on individual components, the employed procedure nevertheless allows a comprehensive overview of the possibilities in terms of maximum machine performance achievable at an early design stage with the associated limited computational requirements. The design procedure and the geometry achieved for the application are presented along with aerodynamic and structural results.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference50 articles.
1. Souza, R.D., Casisi, M., Micheli, D., and Reini, M. A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario. Energies, 2021. 14.
2. Della Volpe, R. Macchine, 2015.
3. Farokhi, S. Aircraft Propulsion, 2014.
4. Cohen, H.E., Rogers, G.F.C., and Saravanamuttoo, H.I.H. Gas Turbine Theory, 2017.
5. Baskharone, E.A. Principles of Turbomachinery in Air-Breathing Engines, 2006.