Enhanced Dynamic Performance in Hybrid Power System Using a Designed ALTS-PFPNN Controller

Author:

Lu Kai-Hung,Hong Chih-Ming,Cheng Fu-Sheng

Abstract

The large-scale, nonlinear and uncertain factors of hybrid power systems (HPS) have always been difficult problems in dynamic stability control. This research mainly focuses on the dynamic and transient stability performance of large HPS under various operating conditions. In addition to the traditional synchronous power generator, wind-driven generator and ocean wave generator, the hybrid system also adds battery energy storage system and unified power flow controller (UPFC), making the system more diversified and more consistent with the current actual operation mode of the complex power grid. The purpose of this study is to propose an adaptive least squares Petri fuzzy probabilistic neural network (ALTS-PFPNN) for UPFC installed in the power grid to enhance the behavior of HPS operation. The proposed scheme improves the active power adjustment and dynamic performance of the integrated wave power generation and offshore wind system under a large range of operating conditions. Through various case studies, the practicability and robustness of ALTS-PFPNN method are verifying it by comparison and analysis with the damping controller based on the designed proportional integral differential (PID) and the control scheme without UPFC. Time-domain simulations were performed using Matlab-Simulink to validate the optimal damping behavior and efficiency of the suggested scheme under various disturbance conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3