Identification of Nitrate Sources in Rivers in a Complex Catchment Using a Dual Isotopic Approach

Author:

Xu Yunyun,Yuan Qiqi,Zhao Chunfa,Wang Lachun,Li Yuhua,Ma Xiaoxue,Guo Jiaxun,Yang HongORCID

Abstract

Excessive nutrient input to surface water, including nitrate, exacerbates water eutrophication. Clarifying the proportions of different nitrate sources in the aquatic environment is critical for improving the polluted water. However, nitrate sources in river basins are very complex and not clearly understood. In this study, nitrogen concentrations and nitrate isotopic compositions were determined to estimate the spatiotemporal variation in nitrate sources in the Yuntaishan River basin, Nanjing, East China, from March 2019 to January 2020. The results showed that the concentrations of total nitrogen (TN), ammonium (NH4+-N), and nitrate (NO3−-N) changed in the ranges of 0.53–18.0 mg/L, 0.01–15.4 mg/L, and 0.06–9.3 mg/L, respectively, wherein NO3−-N was the main nitrogen form. Higher nitrogen concentrations appeared in winter and in the downstream parts of the river. In the entire river basin, the NO3−-N mainly originated from sewage (67%) and soil (26%), with clear spatial variations. NO3−-N in the Yunba sub-watershed was mainly derived from sewage (78%), which was higher than that in other tributaries, i.e., Shengli River (44%) and Yangshan River (49%). This was due to the fact that that Shengli and Yangshan sub-watersheds were covered by urban areas and were equipped with a complete sewage treatment system. In addition, the contributions of sewage to NO3−-N rose from 60% upstream to 86% downstream, suggesting the increasing influence of the point source of sewage. The results showed that 53% of NO3−-N in the basin outlet originated from the point source of sewage near the M4 site. Sewage contributed 75% of NO3−-N in the rainy season and 67% of NO3−-N in the dry season, suggesting the weakly temporal variation. Our results highlight the spatiotemporal variations in sources of NO3−-N. These results will aid in the development of measures needed to control nitrogen pollution in river basins.

Funder

Nanjing Water Science and Technology Project

Major Science and Technology Program for Water Pollution Control and Treatment

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3