Research on Multiple-Factor Dynamic Constitutive Model of Poured Asphalt Concrete

Author:

Wang Jianxiang1,Tang Xinjun2,Wu Qin1,Chen Chuanxiang1

Affiliation:

1. School of Civil Engineering and Architecture, Guizhou Minzu University, Guiyang 550025, China

2. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

This study conducted dynamic triaxial tests on a typical poured asphalt concrete material of core walls in Xinjiang, exploring the dynamic characteristics of poured asphalt concrete under various confining pressures, principal stress ratios, and vibration frequencies. On this basis, the dynamic constitutive relationship of poured asphalt concrete was investigated using the Hardin–Drnevich model. The results indicate that under different confining pressures, principal stress ratios, and vibration frequencies, the variation patterns of the backbone lines of dynamic stress-strain of poured asphalt concrete are basically identical, consistent with a hyperbolic curve. The confining pressure and principal stress ratio significantly affect the backbone line of dynamic stress-strain. By comparison, frequency has a minimal effect. The changing trends of dynamic elasticity modulus and damping ratio of poured asphalt concrete under various factors are almost the same. When the material has high dynamic stress and strain, the hysteresis loop is large. When the curve of the damping ratio becomes flat, the asymptotic constant can be used as the maximum damping ratio. The relationship between the reciprocal of the dynamic elasticity modulus and the dynamic strain of poured asphalt concrete exhibits a linear distribution. Under different ratios of confining pressure to principal stress, there are large discrepancies between the calculated values from the formula and the experimental fitting values of the maximum dynamic elasticity modulus, and the maximum relative errors reach 16.65% and 18.15%, respectively. Therefore, the expression for the maximum dynamic elasticity modulus was modified, and the calculated values using the modified formula were compared with the experimental fitting values. The relative errors are significantly reduced, and the maximum relative errors are 3.02% and 2.04%, respectively, in good agreement with the fitting values of the experimental data. The findings of this article render a theoretical basis and reference for the promotion and application of poured asphalt concrete.

Funder

Guizhou Provincial Basic Research Program

Guizhou Minzu University Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3