Micro/Nanomechanical Characterization of ScAlMgO4 Single Crystal by Instrumented Indentation and Scratch Methods

Author:

Ni Zifeng12ORCID,Yu Jie1,Chen Guomei3,Ji Mingjie1,Qian Shanhua1ORCID,Bian Da1,Liu Ming4ORCID

Affiliation:

1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China

2. Jiangsu Province Engineering Research Center of Micro-Nano Additive and Subtractive Manufacturing, Wuxi 214122, China

3. School of Electromechanical, Wuxi Vocational Institute of Commerce, Wuxi 214153, China

4. Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Abstract

ScAlMgO4 (SCAM), which can be used as an epitaxial substrate material of GaN in power devices, faces the challenge of achieving a high-quality surface by ultra-precision polishing due to its brittle and easily cleaved characteristics, which are closely associated with its mechanical properties. The micromechanical properties of SCAM single crystals were evaluated by nanoindentation and microscratch tests using different indenters. The elastic modulus EIT and the indentation hardness HIT of SCAM obtained by nanoindentation were 226 GPa and 12.1 GPa, respectively. Leaf-shaped chips and the associated step-like planes of SCAM can be found in the severely damaged regime during scratching by Berkovich and Vickers indenters with sharp edges due to the intersection of intense radial and lateral cracks. The fracture toughness (Kc = 1.12 MPa·m1/2) of SCAM can be obtained by using a scratch-based methodology for a spherical indenter based on linear elastic fracture mechanics (LEFM) under an appropriate range of applied loads. An optimal expression for calculating the fracture toughness of easily cleaved materials, including SCAM, via the Vickers indenter-induced cracking method using a Berkovich indenter was recommended.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3