BGP Dataset-Based Malicious User Activity Detection Using Machine Learning

Author:

Park Hansol12,Kim Kookjin12ORCID,Shin Dongil12ORCID,Shin Dongkyoo12ORCID

Affiliation:

1. Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Convergence Engineering for Intelligent Drones, Sejong University, Seoul 05006, Republic of Korea

Abstract

Recent advances in the Internet and digital technology have brought a wide variety of activities into cyberspace, but they have also brought a surge in cyberattacks, making it more important than ever to detect and prevent cyberattacks. In this study, a method is proposed to detect anomalies in cyberspace by consolidating BGP (Border Gateway Protocol) data into numerical data that can be trained by machine learning (ML) through a tokenizer. BGP data comprise a mix of numeric and textual data, making it challenging for ML models to learn. To convert the data into a numerical format, a tokenizer, a preprocessing technique from Natural Language Processing (NLP), was employed. This process goes beyond merely replacing letters with numbers; its objective is to preserve the patterns and characteristics of the data. The Synthetic Minority Over-sampling Technique (SMOTE) was subsequently applied to address the issue of imbalanced data. Anomaly detection experiments were conducted on the model using various ML algorithms such as One-Class Support Vector Machine (One-SVM), Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM), Random Forest (RF), and Autoencoder (AE), and excellent performance in detection was demonstrated. In experiments, it performed best with the AE model, with an F1-Score of 0.99. In terms of the Area Under the Receiver Operating Characteristic (AUROC) curve, good performance was achieved by all ML models, with an average of over 90%. Improved cybersecurity is expected to be contributed by this research, as it enables the detection and monitoring of cyber anomalies from malicious users through BGP data.

Funder

Agency for Defense Development Institute

Publisher

MDPI AG

Subject

Information Systems

Reference39 articles.

1. (2023, April 26). Check Point: Third Quarter of 2022 Reveals Increase in Cyberattacks and Unexpected Developments in Global Trends. Available online: https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/.

2. Scott, K.D. (2018). Joint Publication (JP) 3–12 Cyberspace Operation, The Joint Staff.

3. Malicious file detection method using machine learning and interworking with MITRE ATT&CK framework;Ahn;Appl. Sci.,2022

4. Rekhter, Y., Li, T., and Hares, S. (2006). A Border Gateway Protocol 4 (BGP-4), Internet Engineering Task Force. No. rfc4271.

5. Lad, M., Massey, D., Pei, D., Wu, Y., Zhang, B., and Zhang, L. (August, January 31). PHAS: A Prefix Hijack Alert System. Proceedings of the 15th USENIX Security Symposium, Vancouver, BC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3