Interpreting Disentangled Representations of Person-Specific Convolutional Variational Autoencoders of Spatially Preserving EEG Topographic Maps via Clustering and Visual Plausibility

Author:

Ahmed Taufique1ORCID,Longo Luca1ORCID

Affiliation:

1. Artificial Intelligence and Cognitive Load Lab, The Applied Intelligence Research Centre, School of Computer Science, Technological University Dublin, D07 EWV4 Dublin, Ireland

Abstract

Dimensionality reduction and producing simple representations of electroencephalography (EEG) signals are challenging problems. Variational autoencoders (VAEs) have been employed for EEG data creation, augmentation, and automatic feature extraction. In most of the studies, VAE latent space interpretation is used to detect only the out-of-order distribution latent variable for anomaly detection. However, the interpretation and visualisation of all latent space components disclose information about how the model arrives at its conclusion. The main contribution of this study is interpreting the disentangled representation of VAE by activating only one latent component at a time, whereas the values for the remaining components are set to zero because it is the mean of the distribution. The results show that CNN-VAE works well, as indicated by matrices such as SSIM, MSE, MAE, and MAPE, along with SNR and correlation coefficient values throughout the architecture’s input and output. Furthermore, visual plausibility and clustering demonstrate that each component contributes differently to capturing the generative factors in topographic maps. Our proposed pipeline adds to the body of knowledge by delivering a CNN-VAE-based latent space interpretation model. This helps us learn the model’s decision and the importance of each component of latent space responsible for activating parts of the brain.

Funder

Technological University Dublin

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3