Abstract
This research models and forecasts daily AQI (air quality index) levels in 16 cities/counties of Taiwan, examines their AQI level forecast performance via a rolling window approach over a one-year validation period, including multi-level forecast classification, and measures the forecast accuracy rates. We employ statistical modeling and machine learning with three weather covariates of daily accumulated precipitation, temperature, and wind direction and also include seasonal dummy variables. The study utilizes four models to forecast air quality levels: (1) an autoregressive model with exogenous variables and GARCH (generalized autoregressive conditional heteroskedasticity) errors; (2) an autoregressive multinomial logistic regression; (3) multi-class classification by support vector machine (SVM); (4) neural network autoregression with exogenous variable (NNARX). These models relate to lag-1 AQI values and the previous day’s weather covariates (precipitation and temperature), while wind direction serves as an hour-lag effect based on the idea of nowcasting. The results demonstrate that autoregressive multinomial logistic regression and the SVM method are the best choices for AQI-level predictions regarding the high average and low variation accuracy rates.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Physics and Astronomy
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献