Learn by Yourself: A Feature-Augmented Self-Distillation Convolutional Neural Network for Remote Sensing Scene Image Classification

Author:

Shi Cuiping12ORCID,Ding Mengxiang1,Wang Liguo3,Pan Haizhu4

Affiliation:

1. College of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161000, China

2. College of Information and Engineering, Huzhou University, Huzhou 313000, China

3. College of Information and Communication Engineering, Dalian Nationalities University, Dalian 116000, China

4. College of Computer and Control Engineering, Qiqihar University, Qiqihar 161000, China

Abstract

In recent years, with the rapid development of deep learning technology, great progress has been made in remote sensing scene image classification. Compared with natural images, remote sensing scene images are usually more complex, with high inter-class similarity and large intra-class differences, which makes it difficult for commonly used networks to effectively learn the features of remote sensing scene images. In addition, most existing methods adopt hard labels to supervise the network model, which makes the model prone to losing fine-grained information of ground objects. In order to solve these problems, a feature-augmented self-distilled convolutional neural network (FASDNet) is proposed. First, ResNet34 is adopted as the backbone network to extract multi-level features of images. Next, a feature augmentation pyramid module (FAPM) is designed to extract and fuse multi-level feature information. Then, auxiliary branches are constructed to provide additional supervision information. The self-distillation method is utilized between the feature augmentation pyramid module and the backbone network, as well as between the backbone network and auxiliary branches. Finally, the proposed model is jointly supervised using feature distillation loss, logits distillation loss, and cross-entropy loss. A lot of experiments are conducted on four widely used remote sensing scene image datasets, and the experimental results show that the proposed method is superior to some state-ot-the-art classification methods.

Funder

National Natural Science Foundation of China

Heilongjiang Science Foundation Project of China

Fundamental Research Funds in Heilongjiang Provincial Universities of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3