Mechanism of Topology Change of Flat Magnetic Structures

Author:

Magadeev Eugene,Vakhitov RobertORCID,Sharafullin Ildus

Abstract

The paper investigates the processes of the magnetization reversal of perforated ferromagnetic films with strong anisotropy of the easy-plane type. The investigations have shown that, influenced by a current impulse passing through an antidot, an inhomogeneous magnetic structure is formed, which is accompanied by the localization of a quasiparticle with the +1 topological charge on the antidot and by an emission of a quasiparticle with a –1 charge. It is established that this scenario of the film magnetization reversal underlies a reformation of its inhomogeneous structure also if two or four antidots are present in the film, irrespective of the fact of through which antidots and in which directions the currents are passed. The results of the research obtained by using two independent methods (solving the Landau–Lifshitz–Gilbert equations and analyzing the lattice model) demonstrated good agreement between the two. It is shown that a magnetic film comprising two or four antidots can be used as a memory cell for recording data in the ternary system.

Funder

The Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VLIYaNIE ODNORODNOGO ELEKTRIChESKOGO POLYa NA VIKhREPODOBNYE MAGNITNYE STRUKTURY V PERFORIROVANNYKh PLENKAKh;Журнал экспериментальной и теоретической физики;2024-12-15

2. Impact of an external magnetic field on vortex-like magnetic structures in perforated films;Physica B: Condensed Matter;2024-10

3. Features of magnetic structures in perforated films due to the finite thickness of the sample;Journal of Physics: Condensed Matter;2024-07-19

4. Non-Trivial Effective Anisotropy in Multilayer Ferromagnetic Films;2024

5. Peculiarities of Formation of Flat Inhomogeneous Structures in Nanoscale Magnetic Films;Журнал экспериментальной и теоретической физики;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3