The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft

Author:

Hace AlešORCID

Abstract

In the serial hybrid electric propulsion system of a small propeller aircraft the battery state of charge is fluctuating due to the diversity of possible power flows. Overwhelming visual information on the cockpit displays, besides requiring visual pilot attention, increases pilot workload, which is undesirable, especially in risky flight situations. Haptic interfaces, on the other hand, can provide intuitive cues that can be applied to enhance and simplify the cockpit. In this paper, we deal with an enhanced power lever stick, which can provide feedback force feel with haptic cues for enhanced information flow between the pilot and the powertrain system. We present selected haptic patterns for specific information related to the fluctuating battery state of charge. The haptic patterns were designed to reduce pilot workload, and for easy use, safe and energy-efficient control of the hybrid electric powertrain system. We focus on the advanced control design for high-performance force feedback required for rendering fine haptic signals, which stimulates the sensitive haptics of a pilot’s hand-arm system. The presented control algorithm has been designed by the sliding mode control (SMC) approach in order to provide disturbance rejection and high-fidelity haptic rendering. The proposed control design has been validated on an experimental prototype system.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference156 articles.

1. Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges

2. Aircraft electrical propulsion—Onwards and upwardshttps://www.rolandberger.com/publications/publication_pdf/roland_berger_aircraft_electrical_propulsion_2.pdf

3. Electric Flighthttps://www.pipistrel-aircraft.com/aircraft/electric-flight/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3