Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network

Author:

Duong ,Nguyen ,Phan ,Vo ,Nguyen

Abstract

In this paper, a Hopfield Lagrange network (HLN) method is applied to solve the optimal load dispatch (OLD) problem under the concern of the competitive electric market. The duty of the HLN is to determine optimal active power output of thermal generating units in the aim of maximizing the benefit of electricity generation from all available units. In addition, the performance of the HLN is also tested by using five different functions consisting of the logistic, hyperbolic tangent, Gompertz, error, and Gudermanian functions for updating outputs of continuous neurons. The five functions are tested on two systems with three units and 10 units considering two revenue models in which the first model considers payment for power delivered and the second model concerns payment for reserve allocated. In order to evaluate the real effectiveness and robustness of the HLN, comparisons with other methods such as particle swarm optimization (PSO), the cuckoo search algorithm (CSA) and differential evolution (DE) are also implemented on the same systems. High benefits and fast execution time from the HLN lead to a conclusion that the HLN should be applied for solving the OLD problem in a competitive electric market. Among the five applied functions, error function is considered to be the most effective one because it can support the HLN to find the highest benefit and reach the fastest convergence with the smallest number of iterations. Thus, it is suggested that error function should be used for updating outputs for continuous neurons of the HLN.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3