Removal of Herbicides from Landfill Leachate in Biofilters Stimulated by Ammonium Acetate

Author:

Nord Nadia Brogård,Berthelsen Nils M. Sevelsted,Milter Hasse,Bester Kai

Abstract

At a former Danish polluted landfill, a field experiment using biofilters as an ex-situ remediation strategy for leachate water was carried out. The leachate water was polluted with phenoxy acids, mecoprop, dichlorprop, and their impurities originated from previous years of disposal of production wastes. Three individual biofilters were set up and each was filled with different a support material, e.g., sand, stonewool, and peat amended sand. The sand biofilter was spiked with ammonium acetate in pulses lasting a week to stimulate biomass growth and thereby enhance the removal of the phenoxy acids. The effects on removal and enantioselectivity were studied during a 69-day sampling campaign. Results showed that stimulation of the microbial community with ammonium acetate provided a boost, hence removal in the sand biofilter increased after the dosing whereas the stonewool and peat biofilters showed generally low removal. The highest removal was observed after stimulation in the sand biofilter for both herbicides. After a starting period, the removal was compound-specific but ranged from 60–100%. The final concentrations exceeded the drinking water limits slightly (0.25 µg L−1) (mecoprop and 2-(2/4-chlorophenoxy)propanoic acid), while it was considerably below the limit for all other compounds (2-(2-methylphenoxy)propanoic acid and dichlorprop). Enantioselective fractions were already 0.41, and 0.75 for mecoprop and dichlorprop, respectively, in the inlet, probably due to in-situ degradation in the landfill—Mecoprop showed some enrichment of the (R)-enantiomer in the sand biofilter whereas no real trends were seen in the stonewool and peat biofilter. Only minor alterations in enantiomeric fractions were observed for dichlorprop in all three biofilters. This experiment shows that it is feasible to remove micropollutants from landfill leachates and it is possible to stimulate biomass and thereby initiate and obtain increased removal faster.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Miljøstyrelsen Sådan Fremstilles Drikkevandhttps://mst.dk/natur-vand/vand-i-hverdagen/drikkevand/saadan-fremstilles-drikkevand/

2. Guidelines on Remediation of Contaminated Sites,2002

3. Grundvandsovervågning. Status og Udvikling 1989–2018;Thorling,2019

4. Tilvejebringelse af Beslutningsgrundlag for den Fremtidige Afværge på Stengårdens Losseplads;Overheu,2015

5. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3