Tracking a Decentralized Linear Trajectory in an Intermittent Observation Environment

Author:

Ullah Wasi,Hussain IrshadORCID,Shehzadi Iram,Rahman Zahid,Uthansakul PeerapongORCID

Abstract

Faults and failures are familiar case studies in centralized and decentralized tracking systems. The processing of sensor data becomes more severe in the presence of faults/failures and/or noise. Effective schemes have been presented for decentralized systems, in the presence of faults only. In some practical scenarios of systems, there are certain interruptions in addition to these faults. These interruptions may occur in the form of noise. However it is expected that the decision about the sensor data is difficult in the presence of noise. This is because the noise adversely affects the communication amongst sensors and the processing unit. More complexity is expected when there are faults and noise simultaneously. To deal with this problem, in addition to existing fault detection and isolation schemes, the Kalman filter is employed. Here, a generic discussion is provided, which is equally applicable to other situations. This work addresses various faults in the presence of noise for decentralized tracking systems. Local single faults and multiple faults in the presence of noise are the core issues addressed in this paper. The proposed work is comprised of a general scenario for a decentralized tracking system followed by a case study of a target tracking scenario with and without noise. The presented schemes are also tested for different types of faults. The proposed work presents effective tracking in the presence of noise and faults. The results obtained demonstrate the acceptable performance of the scheme of this work.

Funder

Suranaree University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference15 articles.

1. Wiley Survey of Instrumentation and Measurement;Dyer,2007

2. Distributed finite-time fault-tolerant containment control for multiple ocean Bottom Flying node systems with error constraints

3. Applied Optimal Control: Optimization, Estimation and Control;Bryson,2018

4. Introduction to the Kalman filter and tuning its statistics for near optimal estimates and Cramer Rao bound;Mohan M;arXiv,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3