Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry

Author:

Zhang YichiORCID,Zhu Qi,Lu Yang,Meng Zhou,Hu XiaoyangORCID

Abstract

Modulation instability (MI) is the main limitation factor of the maximum optical power in long-haul phase-sensitive optical time domain reflectometry (Φ-OTDR), and induces signal fading and serious phase noise. In this paper, a method of coherent seed injection is proposed to suppress the MI-induced phase noise in long-haul Φ-OTDR. The spontaneous MI is suppressed by stimulating induced MI in an optical fiber. The visibility of the signal in Φ-OTDR is enhanced and the phase noise is suppressed significantly. This paper offers an effective method to increase the maximum input power with the MI-induced phase noise suppressed in the long-haul Φ-OTDR system. As a result, the maximum input power and sensing distance can be potentially increased, which is greatly beneficial to the enhancement of the performance of long-haul Φ-OTDR.

Funder

National Natural Science Foundation of China

Science project of National University of Defense Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

1. Advances in phase-sensitive optical time-domain reflectometry;Liu;Opto-Electron. Adv.,2022

2. Stark, D.J., Maida, J.L., and Skinner, N.G. Adapting optical technology to dynamic energy prices: Fiber-optic sensing in the contemporary oil field. Proceedings of the Fiber Optic Sensors and Applications XIV.

3. Mondanos, M., Parker, T., Milne, C.H., Yeo, J., Coleman, T., and Farhadiroushan, M. Distributed temperature and distributed acoustic sensing for remote and harsh environments. Proceedings of the Sensors for Extreme Harsh Environments II.

4. Real-time position and speed monitoring of trains using phase-sensitive OTDR;Peng;IEEE Photon. Technol. Lett.,2014

5. Seismic Monitoring with Distributed Acoustic Sensing from the Near-surface to the Deep Oceans;Fernández-Ruiz;J. Lightwave Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3