Effects of Acid Rain Stress on the Physiological and Biochemical Characteristics of Three Plant Species

Author:

Zhang Yuxuan1,Yang Feng2,Wang Yunqi1,Zheng Yonglin1,Zhu Junlin1

Affiliation:

1. Three-Gorges Reservoir Area (Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. Yunfu State-Owned Forest Farm and Forest Park Management Station, Yunfu 527300, China

Abstract

The physiological and biochemical indicators of plants reflect the plant’s adaptation to environmental changes and provide information for the planting and management of acid-resistant tree species. To analyze the responses of typical tree species to recent changes in acid rain conditions in Jinyun Mountain, Chongqing, we focused on three representative tree species in the Jinyun Mountain area of Chongqing: Pinus massoniana, Phyllostachys edulis, and Cinnamomum camphora. A mixed acid rain experiment with five gradients of natural rainfall (NR) and pH values of 7.0, 4.5, 3.5, and 2.5 was conducted in May 2021. The changes in physiological and biochemical indicators (net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, light saturation point, light compensation point, apparent quantum efficiency, dark respiration rate, soluble sugar, starch, soluble protein, proline, malondialdehyde, and antioxidant enzyme activity) were determined. The results show the following: 1. Compared with other treatments, NR and slightly acidic rain increased the relative chlorophyll content in plant seedlings. 2. The synthesis of soluble sugars, starches, and soluble proteins was inhibited to different degrees in the three species under acid rain stress at pH ≤ 3.5. 3. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) initially increased and then decreased with an increase in acidity. 4. Acid rain treatments with pH ≤ 4.5 reduced the net photosynthetic rate (Pn) of plants; the higher the acidity, the lower the Pn. Conclusion: A comprehensive comparison of the indicators revealed that NR and mild acid rain enhanced the plant seedlings’ physiological and biochemical characteristics. A pH of 3.5 was the threshold where acid rain had an adverse effect on Pinus massoniana, Phyllostachys edulis, and Cinnamomum camphora. The high indicator values for NR indicate that these tree species have adapted to current conditions in the Jinyun Mountain area of Chongqing. This study provides new information for selecting tree species adapted to the acid rain environment in Jinyun Mountain, Chongqing.

Funder

Research on Monitoring Technology of Chongqing Carbon Sequestration Based on Remote Sensing Technology

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3