Spot–Ladder Selection of Dislocation Patterns in Metal Fatigue

Author:

Shima Hiroyuki1ORCID,Umeno Yoshitaka2ORCID,Sumigawa Takashi3

Affiliation:

1. Department of Environmental Sciences, University of Yamanashi, Kofu 400-8510, Japan

2. Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

3. Department of Energy Conversion Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan

Abstract

Spontaneous pattern formation by a large number of dislocations is commonly observed during the initial stages of metal fatigue under cyclic straining. It was experimentally found that the geometry of the dislocation pattern undergoes a crossover from a 2D spot-scattered pattern to a 1D ladder-shaped pattern as the amplitude of external shear strain increases. However, the physical mechanism that causes the crossover between different dislocation patterns remains unclear. In this study, we theorized a bifurcation diagram that explains the crossover between the two dislocation patterns. The proposed theory is based on a weakly nonlinear stability analysis that considers the mutual interaction of dislocations as a nonlinearity. It was found that the selection rule among the two dislocation patterns, “spotted” and “ladder-shaped”, can be described by inequalities with respect to nonlinearity parameters contained in the governing equations.

Funder

CREST, Japan Science and Technology Agency

JSPS KAKENHI

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3