Steganalysis of Neural Networks Based on Symmetric Histogram Distribution

Author:

Tang Xiong1,Wang Zichi1ORCID,Zhang Xinpeng1

Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

Abstract

Deep neural networks have achieved remarkable success in various fields of artificial intelligence. However, these models, which contain a large number of parameters, are widely distributed and disseminated by researchers, engineers, and even unauthorized users. Except for intelligent tasks, typically overparameterized deep neural networks have become new digital covers for data hiding, which may pose significant security challenges to AI systems. To address this issue, this paper proposes a symmetric steganalysis scheme specifically designed for neural networks trained for image classification tasks. The proposed method focuses on detecting the presence of additional data without access to the internal structure or parameters of the host network. It employs a well-designed method based on histogram distribution to find the optimal decision threshold, with a symmetric determining rule where the original networks and stego networks undergo two highly symmetrical flows to generate the classification labels; the method has been shown to be practical and effective. SVM and ensemble classifiers were chosen as the binary classifier for their applicability to feature vectors output from neural networks based on different datasets and network structures. This scheme is the first of its kind, focusing on steganalysis for neural networks based on the distribution of network output, compared to conventional digital media such as images, audio, and video. Overall, the proposed scheme offers a promising approach to enhancing the security of deep neural networks against data hiding attacks.

Funder

National Natural Science Foundation of China

Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3