Differential Evolution and Agglomerative-Clustering-Based Mutation Strategy for Complex Numerical Optimization Problems

Author:

Ali Tassawar1ORCID,Khan Hikmat Ullah12ORCID,Iqbal Tasswar1,Alarfaj Fawaz Khaled3ORCID,Alomair Abdullah Mohammad4,Almusallam Naif3ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad Wah Campus, Wah Cantt 47040, Pakistan

2. Department of Computer Science, Namal University, Mianwali 42001, Pakistan

3. Department of Management Information Systems (MIS), School of Business, King Faisal University (KFU), Hofuf 31982, Al-Ahsa, Saudi Arabia

4. Department of Quantitative Methods, School of Business, King Faisal University (KFU), Hofuf 31982, Al-Ahsa, Saudi Arabia

Abstract

Differential evolution is an evolutionary algorithm that is used to solve complex numerical optimization problems. Differential evolution balances exploration and exploitation to find the best genes for the objective function. However, finding this balance is a challenging task. To overcome this challenge, we propose a clustering-based mutation strategy called Agglomerative Best Cluster Differential Evolution (ABCDE). The proposed model converges in an efficient manner without being trapped in local optima. It works by clustering the population to identify similar genes and avoids local optima. The adaptive crossover rate ensures that poor-quality genes are not reintroduced into the population. The proposed ABCDE is capable of generating a population efficiently where the difference between the values of the trial vector and objective vector is even less than 1% for some benchmark functions, and hence it outperforms both classical mutation strategies and the random neighborhood mutation strategy. The optimal and fast convergence of differential evolution has potential applications in the weight optimization of artificial neural networks and in stochastic and time-constrained environments such as cloud computing.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3