Path Planning Algorithm for a Wheel-Legged Robot Based on the Theta* and Timed Elastic Band Algorithms

Author:

Sun Junkai12,Sun Zezhou2,Wei Pengfei1,Liu Bin2,Wang Yaobing2,Zhang Tianyi2,Yan Chuliang1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China

2. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Abstract

Aimed at the difficulty of path planning resulting from the variable configuration of the wheel-legged robot for future deep space explorations, this paper proposes a path planning algorithm based on the Theta* algorithm and Timed Elastic Band (TEB) algorithm. Firstly, the structure of the wheel-legged robot is briefly introduced, and the workspace of a single leg is analyzed. Secondly, a method to judge complete obstacles and incomplete obstacles according to the height of the obstacles is proposed alongside a method to search for virtual obstacles, to generate a grid map of the wheel and a grid map of the body, respectively. By dividing obstacles into complete obstacles and incomplete obstacles, the path planning of the wheel-legged robot is split into the planning of the body path and the planning of the wheel path. The body can be still simplified as a point by searching for the virtual obstacle, which avoids the difficulty of a planning path of a variable shape. Then, we proposed hierarchical planning and multiple optimization algorithms for the body path and wheel path based on the Theta* algorithm and TEB algorithm. The path can be optimized and smoothed effectively to obtain a shorter length and higher safety. On that basis, the proposed algorithm is simulated by Matlab. The results of simulations show that the algorithm proposed in this paper can effectively plan the path of the wheel-legged robot by using variable configurations for different types of obstacles. The path-planning algorithm of the wheel-legged robot proposed in this paper has a broad prospect for deep space exploration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3