Exploration of Quantum Milne–Mercer-Type Inequalities with Applications

Author:

Bin-Mohsin Bandar1,Javed Muhammad Zakria2ORCID,Awan Muhammad Uzair2ORCID,Khan Awais Gul2,Cesarano Clemente3,Noor Muhammad Aslam4ORCID

Affiliation:

1. Department of Mathematics, College of Science, King Saud University, Riyadh 145111, Saudi Arabia

2. Department of Mathematics, Government College University, Faisalabad 54000, Pakistan

3. Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy

4. Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan

Abstract

Quantum calculus provides a significant generalization of classical concepts and overcomes the limitations of classical calculus in tackling non-differentiable functions. Implementing the q-concepts to obtain fresh variants of classical outcomes is a very intriguing aspect of research in mathematical analysis. The objective of this article is to establish novel Milne-type integral inequalities through the utilization of the Mercer inequality for q-differentiable convex mappings. In order to accomplish this task, we begin by demonstrating a new quantum identity of the Milne type linked to left and right q derivatives. This serves as a supporting result for our primary findings. Our approach involves using the q-equality, well-known inequalities, and convex mappings to obtain new error bounds of the Milne–Mercer type. We also provide some special cases, numerical examples, and graphical analysis to evaluate the efficacy of our results. To the best of our knowledge, this is the first article to focus on quantum Milne–Mercer-type inequalities and we hope that our methods and findings inspire readers to conduct further investigation into this problem.

Funder

King Saud University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3