End-to-End Modeling and Transfer Learning for Audiovisual Emotion Recognition in-the-Wild

Author:

Dresvyanskiy Denis,Ryumina ElenaORCID,Kaya HeysemORCID,Markitantov Maxim,Karpov AlexeyORCID,Minker Wolfgang

Abstract

As emotions play a central role in human communication, automatic emotion recognition has attracted increasing attention in the last two decades. While multimodal systems enjoy high performances on lab-controlled data, they are still far from providing ecological validity on non-lab-controlled, namely “in-the-wild” data. This work investigates audiovisual deep learning approaches to emotion recognition in in-the-wild problem. Inspired by the outstanding performance of end-to-end and transfer learning techniques, we explored the effectiveness of architectures in which a modality-specific Convolutional Neural Network (CNN) is followed by a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) using the AffWild2 dataset under the Affective Behavior Analysis in-the-Wild (ABAW) challenge protocol. We deployed unimodal end-to-end and transfer learning approaches within a multimodal fusion system, which generated final predictions using a weighted score fusion scheme. Exploiting the proposed deep-learning-based multimodal system, we reached a test set challenge performance measure of 48.1% on the ABAW 2020 Facial Expressions challenge, which advances the first-runner-up performance.

Funder

Russian Foundation for Basic Research

Russian state research

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3