Effects of Processing Parameters for Vacuum-Bagging-Only Method on Shape Conformation of Laminated Composites

Author:

Mujahid YasirORCID,Sallih Nabihah,Mustapha Mazli,Abdullah Mohamad Zaki,Mustapha Faizal

Abstract

Complex composite structures manufactured using a low-pressure vacuum bag-only (VBO) method are more susceptible to defects than flat laminates because of the presence of complex compaction conditions at corners. This study investigates the contribution of multivariate processing parameters such as bagging techniques, curing profiles, and laminate structures on laminates’ shape conformation. Nine sets of laminates were produced with a concave corner and another nine sets with a convex corner, both with a 45° inclined structure. Three-way analysis of variance (ANOVA) was performed to quantify thickness variation and spring effect of laminated composites. The analysis for concave and convex corners showed that the bagging techniques is the main factor in controlling the laminate thickness for complex shape applications. The modified (single) vacuum-bag-only (MSVB) technique appeared to be superior when compared to other bagging techniques, exhibiting the least coefficients of variation of 0.015 and 0.016 in composites with concave and convex corners, respectively. Curing profiles and their interaction with bagging techniques showed no statistical significance in the contribution toward laminate thickness variation. The spring effect of laminated composites was investigated by calculating the coefficient of determination (R2) relative to that of the mold. The specimens exhibited a good agreement with R2 values ranging from 0.9824 to 0.9946, with no major data offset. This study provides guidelines to reduce thickness variations and spring effect in laminated composites with complex shapes by the optimum selection of processing parameters for prepreg processing.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3