Abstract
Measuring the complexity of time series provides an important indicator for characteristic analysis of nonlinear systems. The permutation entropy (PE) is widely used, but it still needs to be modified. In this paper, the PE algorithm is improved by introducing the concept of the network, and the network PE (NPE) is proposed. The connections are established based on both the patterns and weights of the reconstructed vectors. The complexity of different chaotic systems is analyzed. As with the PE algorithm, the NPE algorithm-based analysis results are also reliable for chaotic systems. Finally, the NPE is applied to estimate the complexity of EEG signals of normal healthy persons and epileptic patients. It is shown that the normal healthy persons have the largest NPE values, while the EEG signals of epileptic patients are lower during both seizure-free intervals and seizure activity. Hence, NPE could be used as an alternative to PE for the nonlinear characteristics of chaotic systems and EEG signal-based physiological and biomedical analysis.
Funder
the China Postdoctoral Science Foundation grant number
the National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献