Abstract
The unavoidable noise often present in synthetic aperture radar (SAR) images, such as speckle noise, negatively impacts the subsequent processing of SAR images. Further, it is not easy to find an appropriate application for SAR images, given that the human visual system is sensitive to color and SAR images are gray. As a result, a noisy SAR image fusion method based on nonlocal matching and generative adversarial networks is presented in this paper. A nonlocal matching method is applied to processing source images into similar block groups in the pre-processing step. Then, adversarial networks are employed to generate a final noise-free fused SAR image block, where the generator aims to generate a noise-free SAR image block with color information, and the discriminator tries to increase the spatial resolution of the generated image block. This step ensures that the fused image block contains high resolution and color information at the same time. Finally, a fused image can be obtained by aggregating all the image blocks. By extensive comparative experiments on the SEN1–2 datasets and source images, it can be found that the proposed method not only has better fusion results but is also robust to image noise, indicating the superiority of the proposed noisy SAR image fusion method over the state-of-the-art methods.
Funder
Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献