Phase Equilibrium of the Quaternary System LiBr-Li2SO4-KBr-K2SO4-H2O at 308.15 K

Author:

Li Bin,Jing Xinjun,Yuan Junsheng

Abstract

The phase equilibria of the reciprocal quaternary system LiBr-Li2SO4-KBr-K2SO4-H2O and its ternary sub-systems LiBr-Li2SO4-H2O and KBr-K2SO4-H2O at 308.15 K were studied using the isothermal dissolution equilibrium method. Then, the solubility data of the equilibrium solutions were collected, and the phase diagrams were plotted. The phase diagrams of the ternary sub-systems at 308.15 K were compared with those at other temperatures. This study found that the phase diagram of the LiBr-Li2SO4-H2O system at 308.15 K consisted of an invariant point, two solid-phase crystallization regions of Li2SO4·H2O and LiBr·2H2O, and their corresponding solubility curves. The system generated two hydrated salts, which belonged to the hydrate type I phase diagram. The phase diagram of the KBr-K2SO4-H2O system at 308.15 K consisted of an invariant point, two univariant solubility curves, and two solid-phase crystallization regions of KBr and K2SO4, and no solid solution and double salts were formed. Thus, it belonged to a simple co-saturation type phase diagram. In the LiBr-Li2SO4-KBr-K2SO4-H2O system, K2SO4·Li2SO4 double salt formed at 308.15 K, and the phase diagram consisted of three invariant points, five crystallization regions, and seven univariant solubility curves.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference27 articles.

1. Novel approaches for lithium extraction from salt-lake brines: A review

2. Demand analysis and policy suggestions of Lithium resources in China’s new energy vehicle industry;Zhong;Energy China,2018

3. Comprehensive Review of Global Lithium Resources;Su;J. Salt Lake,2019

4. Manufacture of sodium-free lithium chloride from salt lake brine

5. Determination of boundary conditions for highly efficient separation of magnesium and lithium from salt lake brine by reaction-coupled separation technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3