Numerical and Experiment Investigation on Novel Guide Vane Structures of Turbo Air Classifier

Author:

Zeng YunORCID,Huang Bowen,Qin Daoxin,Zhou Sizhu,Li Meiqiu

Abstract

In this paper, three types of air guide vanes are designed: direct-type, L-type, and logarithmic spiral type, respectively. ANSYS-FLUENT 20.0 is used to numerically simulate the internal flow field of turbo air classifier by novel different structures. The numerical results show that the guide vane structures have a good effect on the flow field stability of the annular function zone in the classifying chamber. The distribution of tangential velocity and radial velocity verified the logarithmic spiral guide vane, and makes the airflow flow along the rotor cage circumferentially uniformly. In addition, the turbulent dissipation rate and energy loss decreases in the rotor cage region, which also shows that the guide vane is beneficial to improve classification performance. The tromp curve of the numerical simulation shows that the logarithmic spiral guide vane reduced the cutting size by 6.3% and 23.7% at two different process parameters, and is obviously better than other guide vane structures in improving the classification sharpness index (K). Finally, the reliability of numerical simulation is verified by material experiment. The research results have certain theoretical significance and guidance for the structural design of the guide vanes of the turbo air classifier.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3