Abstract
In the context of climate change and the reduction in CO2 emissions from fossil fuel combustion, the integration of CO2 capture technologies in steam power plants is a key solution. The aim of this study was to analyze the use of ammonia, at different mass concentrations, in capturing post-combustion CO2 in a coal-fired power station and comparing it with the reference 30% MEA case. In this regard, a multi-criteria model was developed to establish the optimal solvent used, considering the least impact on technical performance, economic, and environmental indicators. As a result, the lowest CO2 capture cost was obtained for the CO2 capture process based on 7% NH3, with 59.07 €/tCO2. Integration of the CO2 capture process is more economically viable when the CO2 emissions tax is higher than 70 €/tCO2 for 7% NH3 and 15% NH3, 80 €/tCO2 for 5% NH3 and 30% MEA, and 90 €/tCO2 for 2% NH3. Regarding the overall efficiency, the energy penalty associated with the CO2 capture process integration varied between 15 and 35%, and the lowest value was obtained for 15% NH3. The GWP indicator ranged between 113 and 149 kg_CO2_eq/MWh for NH3 compared to MEA 133 kg_CO2_eq/MWh and the case with no CO2 capture was 823 kg_CO2_eq/MWh.
Funder
Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献