Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions

Author:

Ishigami Takahiro,Irikura Motoki,Tsukahara TakahiroORCID

Abstract

Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms and modeling of bubble dynamic behaviors and mass transfer under gravity: A review;Chemical Engineering Science;2023-08

2. Point Source Estimation via Deep Learning for Passive Scalar Turbulent Diffusion;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

3. Applicability of Convolutional Neural Network for Estimation of Turbulent Diffusion Distance from Source Point;Processes;2022-11-30

4. Electric Air Taxis Create Megadeal Buzz;Engineering;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3