Ecological Network Construction Based on Red, Green and Blue Space: A Case Study of Dali City, China

Author:

Chen Rong1,Zhang Shunmin1,Huang Xiaoyuan2ORCID,Li Xiang1,Peng Jiansong3

Affiliation:

1. College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China

2. College of Economics and Management, Southwest Forestry University, Kunming 650224, China

3. College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China

Abstract

Rapid urbanization leads to fragmentation and reduced connectivity of urban landscapes, endangering regional biodiversity conservation and sustainable development. Constructing a red, green, and blue spatial ecological network is an effective way to alleviate ecological pressure and promote economic development. Using circuit theory, hydrological analysis, and suitability analysis, this study constructs a composite ecological network under urban–rural integration. The results show the following: (1) A total of 22 ecological corridors with a length of 349.20 km, 22 ecological pinch points, and 22 ecological barrier points are identified in the municipal area, mainly distributed in Haidong Town. There are 504 stormwater corridors, which are more evenly distributed, 502 riverfront landscape corridors, and 130 slow-moving landscape corridors. (2) A total of 20 ecological corridors, with a length of 99.23 km, 19 ecological pinch points, and 25 barrier points were identified in the main urban area, and most of them are located in the ecological corridors. There are 71 stormwater corridors, mainly located in the northwestern forest area, 71 riverfront recreation corridors, and 50 slow-moving recreation corridors. (3) Two scales of superimposed ecological source area of 3.65 km2, and eleven ecological corridors, are primarily distributed between Erhai Lake and Xiaguan Town. There are two superimposed stormwater corridors and fourteen recreational corridors. The eco-nodes are mostly distributed in the east and south of Dali City; wetland nodes are mainly situated in the eighteen streams of Cangshan Mountain; and landscape nodes are more balanced in spatial distribution. The study results can provide a reference for composite ecological network construction.

Publisher

MDPI AG

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3