Determination of Permanent Deformations of Non-Cohesive Soils in Pavement Structures under Repeated Traffic Load

Author:

Vamos Mate Janos12,Szendefy Janos2

Affiliation:

1. CDM Smith SE, Darmstädter Str. 63, 64404 Bickenbach, Germany

2. Department of Engineering Geology and Geotechnics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

Abstract

One of the main types of distress in pavement structures is rutting, which may also reduce serviceability significantly. Most design methods typically attribute rutting to the asphalt layer alone, proposing that it can be managed by controlling vertical deformation or stress at the subgrade’s top. Furthermore, these methods frequently lack precise measurements for rut depth. On-site measurements show that the majority of permanent deformation occurs in the unbound layers beneath the asphalt; attention should be directed towards these layers. In recent literature, there are calculation methods that account for accumulating strains in soils. However, further investigation is needed regarding the effect of soil properties and the significance of the pavement cross-section. The literature is also somewhat contractionary regarding the origin of permanent deformations. In this research, the residual settlement of soils (base, subbase, and subgrade) under flexible pavement systems was analyzed due to the repeated traffic loads. Rut depths were calculated and analyzed using the High-Cycle Accumulation (HCA) model. The different behaviour in each course of the pavement system is discussed to reveal their contribution to total ruts. The effect of the grain size distribution of the subgrade was analyzed, and its significance on the rutting depths was demonstrated. Standardized pavement cross-sections with different asphalt thicknesses were evaluated, and the calculated settlements of the pavement originating from the ground during the design lifetime are also presented. It is shown that, with the same number of repetitions, the settlements calculated in each traffic load class are proportional to the thickness of the asphalt course. The contribution of the base, subbase, and subgrade courses to the total settlement is also presented for different subgrade types and traffic load classes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3