Abstract
Markov-type inequalities are often used in numerical solutions of differential equations, and their constants improve error bounds. In this paper, the upper approximation of the constant in a Markov-type inequality on a simplex is considered. To determine the constant, the minimal polynomial and pluripotential theories were employed. They include a complex equilibrium measure that solves the extreme problem by minimizing the energy integral. Consequently, examples of polynomials of the second degree are introduced. Then, a challenging bilevel optimization problem that uses the polynomials for the approximation was formulated. Finally, three popular meta-heuristics were applied to the problem, and their results were investigated.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献