Abstract
An electrically small patch antenna with a low-cost high-permittivity ceramic substrate material for use in a ground-penetrating radar is proposed in this work. The antenna is based on a commercial ceramic 915 MHz patch antenna with a size of 25 × 25 × 4 mm3 and a weight of 12.9 g. The influences of the main geometric parameters on the antenna’s electromagnetic characteristics were comprehensively studied. Three bandwidth improvement techniques were sequentially applied to optimize the antenna: tuning the key geometric parameters, adding cuts on the edges, and adding parasitic radiators. The designed antenna operates at around 1.3 GHz and has more than 40 MHz continuous −3 dB bandwidth. In comparison to the original antenna, the −3 and −6 dB fractional bandwidth is improved by 1.8 times and 4 times, respectively. Two antennas of the proposed design together with a customized radar were installed on an unmanned aerial vehicle (UAV) for a quick search for survivors after earthquakes or gas explosions without exposing the rescue staff to the uncertain dangers of moving on the debris.
Funder
Bundesministerium für Bildung und Forschung
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference42 articles.
1. Design of a small size biquad-UWB-patch-antenna and signal processing for detecting respiration of trapped victims
2. MEDER Rescue Radarhttps://www.meder-commtech.de/gps-ortungssysteme-rescue-radar-ortungstechnik.html
3. Scarabot Search and Rescuehttps://scarabot.de/
4. Vision-based autonomous landing in catastrophe-struck environments;Mittal;arXiv,2018
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献