Abstract
In this paper, the static problem of equilibrium of contact between an axisymmetric deflected circular membrane and a frictionless rigid plate was analytically solved, where an initially flat circular membrane is fixed on its periphery and pressurized on one side by gas such that it comes into contact with a frictionless rigid plate, resulting in a restriction on the maximum deflection of the deflected circular membrane. The power series method was employed to solve the boundary value problem of the resulting nonlinear differential equation, and a closed-form solution of the problem addressed here was presented. The difference between the axisymmetric deformation caused by gas pressure loading and that caused by gravity loading was investigated. In order to compare the presented solution applying to gas pressure loading with the existing solution applying to gravity loading, a numerical example was conducted. The result of the conducted numerical example shows that the two solutions agree basically closely for membranes lightly loaded and diverge as the external loads intensify.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)