Permeate Flux Control in SMBR System by Using Neural Network Internal Model Control

Author:

Abdul Wahab Norhaliza,Mahmod Nurazizah,Vilanova RamonORCID

Abstract

This paper presents a design of a data-driven-based neural network internal model control for a submerged membrane bioreactor (SMBR) with hollow fiber for microfiltration. The experiment design is performed for measurement of physical parameters from an actuator input (permeate pump voltage), which gives the information (outputs) of permeate flux and trans-membrane pressure (TMP). The palm oil mill effluent is used as an influent preparation to depict fouling phenomenon in the membrane filtration process. From the experiment, membrane fouling potential is observed from flux decline pattern, with a rapid increment of TMP (above 200 mbar). Membrane fouling is a complex process and the available models in literature are not designed for control system (filtration performance). Therefore, this work proposes an aeration fouling control strategy to measure the filtration performance. The artificial neural networks (Feed-Forward Neural Network—FFNN, Radial Basis Function Neural Network—RBFNN and Nonlinear Autoregressive Exogenous Neural Network—NARXNN) are used to model dynamic behaviour of flux and TMP. In this case, only flux is used in closed loop control application, whereby the TMP effect is used for monitoring. The simulation results show that reliable prediction of membrane fouling potential is obtained. It can be observed that almost all the artificial neural network (ANN) models have similar shape with the actual data set, with the highest accuracy of more than 90% for both RBFNN and NARXN. The RBFNN is preferable due to simple structure of the network. In the control system, the RBFNN IMC depicts the highest closed loop performance with only 3.75 s (settling time) for setpoint changes when compared with other controllers. In addition, it showed fast performance in disturbance rejection with less overshoot. In conclusion, among the different neural network tested configurations the one based on radial basis function provides the best performance with respect to prediction as well as control performance.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3