Optimization of Virtual Shack-Hartmann Wavefront Sensing

Author:

Yue XianORCID,Yang YaliangORCID,Xiao Fei,Dai Hao,Geng Chao,Zhang Yudong

Abstract

Virtual Shack–Hartmann wavefront sensing (vSHWS) can flexibly adjust parameters to meet different requirements without changing the system, and it is a promising means for aberration measurement. However, how to optimize its parameters to achieve the best performance is rarely discussed. In this work, the data processing procedure and methods of vSHWS were demonstrated by using a set of normal human ocular aberrations as an example. The shapes (round and square) of a virtual lenslet, the zero-padding of the sub-aperture electric field, sub-aperture number, as well as the sequences (before and after diffraction calculation), algorithms, and interval of data interpolation, were analyzed to find the optimal configuration. The effect of the above optimizations on its anti-noise performance was also studied. The Zernike coefficient errors and the root mean square of the wavefront error between the reconstructed and preset wavefronts were used for performance evaluation. The performance of the optimized vSHWS could be significantly improved compared to that of a non-optimized one, which was also verified with 20 sets of clinical human ocular aberrations. This work makes the vSHWS’s implementation clearer, and the optimization methods and the obtained results are of great significance for its applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3