Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources

Author:

Brescia EliaORCID,Costantino DonatelloORCID,Marzo Federico,Massenio Paolo Roberto,Cascella Giuseppe LeonardoORCID,Naso David

Abstract

Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information. This paper proposes a novel identification strategy for surface PMSMs (SPMSMs), highly suitable for large-scale systems. A novel multistep approach using measurement data at different operating conditions of the SPMSM is proposed to perform the parameter identification without requiring signal injection, extra sensors, machine information, and human interventions. Thus, the proposed method overcomes numerous issues of the existing parameter identification schemes. An IoT/cloud architecture is designed to implement the proposed multistep procedure and massively perform SPMSM parameter identifications. Finally, hardware-in-the-loop results show the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Runge-Kutta optimization for fractional input nonlinear autoregressive exogenous system identification with key-term separation;Chaos, Solitons & Fractals;2024-05

2. Nonintrusive Parameter Identification of IoT-Embedded Isotropic PMSM Drives;IEEE Journal of Emerging and Selected Topics in Power Electronics;2023-10

3. Parameter Estimation for IPMSM Using Coupled Adaline Neural Networks without Signal Injection;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

4. Spatiotemporal Learning of Dynamic Positron Emission Tomography Data Improves Diagnostic Accuracy in Breast Cancer;IEEE Transactions on Radiation and Plasma Medical Sciences;2023-07

5. Dynomics: A Novel and Promising Approach for Improved Breast Cancer Prognosis Prediction;Journal of Personalized Medicine;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3