Joint QTL Mapping and Transcriptome Sequencing Analysis Reveal Candidate Genes for Salinity Tolerance in Oryza sativa L. ssp. Japonica Seedlings

Author:

Li Shuangshuang1,Xu Shanbin1,Zheng Jie1,Du Haoqiang1,Li Chong1,Shen Shen1,Liang Shaoming1,Wang Jingguo1,Liu Hualong1,Yang Luomiao1,Xin Wei1,Jia Yan1,Zou Detang1ORCID,Zheng Hongliang1

Affiliation:

1. Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China

Abstract

Salinity stress is one of the major abiotic stresses affecting crop growth and production. Rice is an important food crop in the world, but also a salt-sensitive crop, and the rice seedling stage is the most sensitive to salt stress, which directly affects the final yield formation. In this study, two RIL populations derived from the crosses of CD (salt-sensitive)/WD (salt-tolerant) and KY131 (salt-sensitive)/XBJZ (salt-tolerant) were used as experimental materials, and the score of salinity toxicity (SST), the relative shoot length (RSL), the relative shoot fresh weight (RSFW), and the relative shoot dry weight (RSDW) were used for evaluating the degree of tolerance under salt stress in different lines. The genetic linkage map containing 978 and 527 bin markers were constructed in two RIL populations. A total of 14 QTLs were detected on chromosomes 1, 2, 3, 4, 7, 9, 10, 11, and 12. Among them, qSST12-1, qSST12-2, and qRSL12 were co-localized in a 140-kb overlap interval on chromosome 12, which containing 16 candidate genes. Furthermore, transcriptome sequencing and qRT-PCR were analyzed in CD and WD under normal and 120 mM NaCl stress. LOC_Os12g29330, LOC_Os12g29350, LOC_Os12g29390, and LOC_Os12g29400 were significantly induced by salt stress in both CD and WD. Sequence analysis showed that LOC_Os12g29400 in the salt-sensitive parents CD and KY131 was consistent with the reference sequence (Nipponbare), whereas the salt-tolerant parents WD and XBJZ differed significantly from the reference sequence both in the promoter and exon regions. The salt-tolerant phenotype was identified by using two T3 homozygous mutant plants of LOC_Os12g29400; the results showed that the score of salinity toxicity (SST) of the mutant plants (CR-3 and CR-5) was significantly lower than that of the wild type, and the seedling survival rate (SSR) was significantly higher than that of the wild type, which indicated that LOC_Os12g29400 could negatively regulate the salinity tolerance of rice at the seedling stage. The results lay a foundation for the analysis of the molecular mechanism of rice salinity tolerance and the cultivation of new rice varieties.

Funder

Key Research and Development Projects of Heilongjiang Province

National Natural Science Foundation of China

“Academic Backbone” Project of Northeast Agricultural University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3