A 4D Proteome Investigation of the Potential Mechanisms of SA in Triggering Resistance in Kiwifruit to Pseudomonas syringae pv. actinidiae

Author:

Qu Dong12ORCID,Yan Fei2,Zhang Yu23,Huang Lili1ORCID

Affiliation:

1. College of Plant Protection, Northwest A&F University, Xianyang 712100, China

2. Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China

3. Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China

Abstract

Kiwifruit bacterial cankers caused by Pseudomonas syringae pv. actinidiae (Psa) are a serious threat to the kiwifruit industry. Salicylic acid (SA) regulates plant defense responses and was previously found to enhance kiwifruit’s resistance to Psa. However, the underlying mechanisms of this process remain unclear. In this study, we used 4D proteomics to investigate how SA enhances kiwifruit’s resistance to Psa and found that both SA treatment and Psa infection induced dramatic changes in the proteomic pattern of kiwifruit. Psa infection triggered the activation of numerous resistance events, including the MAPK cascade, phenylpropanoid biosynthesis, and hormone signaling transduction. In most cases, the differential expression of a number of genes involved in the SA signaling pathway played a significant role in kiwifruit’s responses to Psa. Moreover, SA treatment upregulated numerous resistance-related proteins, which functioned in defense responses to Psa, including phenylpropanoid biosynthesis, the MAPK cascade, and the upregulation of pathogenesis-related proteins. We also found that SA treatment could facilitate timely defense responses to Psa infection and enhance the activation of defense responses that were downregulated in kiwifruit during infection with Psa. Thus, our research deciphered the potential mechanisms of SA in promoting Psa resistance in kiwifruit and can provide a basis for the use of SA to enhance kiwifruit resistance and effectively control the occurrence of kiwifruit bacterial cankers.

Funder

the Talent Project of Shaanxi University of Technology

the Project of Shaanxi Provincial Department of Science and Technology

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3