Comparative Transcriptome Analysis Reveals the Molecular Mechanism of Bacillus velezensis GJ-7 Assisting Panax notoginseng against Meloidogyne hapla

Author:

Wu Wentao1,Wang Jingjing1,Wang Zhuhua1,Yan Xirui1,Wang Yang1,He Xiahong12

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China

2. Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China

Abstract

The rhizosphere bacteria Bacillus velezensis GJ-7, as a biological control agent (BCA), has significant biological control effects on Meloidogyne hapla, and has strong colonization ability in the root of Panax notoginseng. In this study, we conducted a comparative transcriptome analysis using P. notoginseng plant roots treated with B. velezensis GJ-7 or sterile water alone and in combination with M. hapla inoculation to explore the interactions involving the P. notoginseng plant, B. velezensis GJ-7, and M. hapla. Four treatments from P. notoginseng roots were sequenced, and twelve high-quality total clean bases were obtained, ranging from 3.57 to 4.74 Gb. The Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that numerous DEGs are involved in the phenylpropane biosynthesis pathway and the MAPK signaling pathway in the roots of P. notoginseng with B. velezensis GJ-7 treatments. The analysis results of the two signaling pathways indicated that B. velezensis GJ-7 could enhance the expression of lignin- and camalexin-synthesis-related genes in plant roots to resist M. hapla. In addition, B. velezensis GJ-7 could enhance plant resistance to M. hapla by regulating the expression of resistance-related genes and transcription factors (TFs), including ETR, ERF, ChiB, WRKY22, and PR1. The expression of plant disease resistance genes in the roots of P. notoginseng with different treatments was validated by using real-time quantitative PCR (qRT-PCR), and the results were consistent with transcriptome sequencing. Taken together, this study indicated that B. velezensis GJ-7 can trigger a stronger defense response of P. notoginseng against M. hapla.

Funder

National Key Research and Development Program

China Agriculture Research System

Major Science and Technology Project of Yunnan and Kunming

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3