Identification of New GSK3β Inhibitors through a Consensus Machine Learning-Based Virtual Screening

Author:

Galati Salvatore1ORCID,Di Stefano Miriana12ORCID,Bertini Simone1ORCID,Granchi Carlotta1ORCID,Giordano Antonio34,Gado Francesca5,Macchia Marco1,Tuccinardi Tiziano1ORCID,Poli Giulio1

Affiliation:

1. Department of Pharmacy, University of Pisa, 56126 Pisa, Italy

2. Department of Life Sciences, University of Siena, 53100 Siena, Italy

3. Sbarro Institute for Cancer Research and Molecular Medicine Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA

4. Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy

5. Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy

Abstract

Glycogen synthase kinase-3 beta (GSK3β) is a serine/threonine kinase that plays key roles in glycogen metabolism, Wnt/β-catenin signaling cascade, synaptic modulation, and multiple autophagy-related signaling pathways. GSK3β is an attractive target for drug discovery since its aberrant activity is involved in the development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. In the present study, multiple machine learning models aimed at identifying novel GSK3β inhibitors were developed and evaluated for their predictive reliability. The most powerful models were combined in a consensus approach, which was used to screen about 2 million commercial compounds. Our consensus machine learning-based virtual screening led to the identification of compounds G1 and G4, which showed inhibitory activity against GSK3β in the low-micromolar and sub-micromolar range, respectively. These results demonstrated the reliability of our virtual screening approach. Moreover, docking and molecular dynamics simulation studies were employed for predicting reliable binding modes for G1 and G4, which represent two valuable starting points for future hit-to-lead and lead optimization studies.

Funder

Regione Toscana

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3