Affiliation:
1. Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
2. Department of Entomology and Nematology, Comprehensive Cancer Center UCDMC, University of California, Davis, CA 95616, USA
3. Department of Biostatistics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19146, USA
Abstract
Soluble epoxide hydrolase (sEH) is an important enzyme for metabolic and cardiovascular health. sEH converts FFA epoxides (EpFAs), many of which are regulators of various cellular processes, to biologically less active diols. In human studies, diol (sEH product) to EpFA (sEH substrate) ratios in plasma or serum have been used as indices of sEH activity. We previously showed these ratios profoundly decreased in rats during acute feeding, possibly reflecting decreases in tissue sEH activities. The present study was designed to test which tissue(s) these measurements in the blood represent and if factors other than sEH activity, such as renal excretion or dietary intake of EpFAs and diols, significantly alter plasma EpFAs, diols, and/or their ratios. The results show that postprandial changes in EpFAs and diols and their ratios in plasma were very similar to those observed in the liver but not in other tissues, suggesting that the liver is largely responsible for these changes in plasma levels. EpFAs and diols were excreted into the urine, but their levels were not significantly altered by feeding, suggesting that renal excretion of EpFAs and diols may not play a major role in postprandial changes in circulating EpFAs, diols, or their ratios. Diet intake had significant impacts on circulating EpFA and diol levels but not on diol-to-EpFA (D-to-E) ratios, suggesting that these ratios, reflecting sEH activities, may not be significantly affected by the availability of sEH substrates (i.e., EpFAs). In conclusion, changes in FFA D-to-E ratios in plasma may reflect those in the liver, which may in turn represent sEH activities in the liver, and they may not be significantly affected by renal excretion or the dietary intake of EpFAs and diols.
Funder
NIH
NIH—NIEHS
CounterAct Program
UC Davis Academic Federation Innovative Development Award
West Coast Metabolomics Center at UC Davis
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis