Dual-Wavelength Polarization-Dependent Bifocal Metalens for Achromatic Optical Imaging Based on Holographic Principle

Author:

Qu JiaqiORCID,Luo Huaijian,Yu ChangyuanORCID

Abstract

Recently, ultrathin metalenses have attracted dramatically growing interest in optical imaging systems due to the flexible control of light at the nanoscale. In this paper, we propose a dual-wavelength achromatic metalens that will generate one or two foci according to the polarization of the incident. Based on geometric phase modulation, two unit cells are attentively selected for efficient operation at distinct wavelengths. By patterning them to two divided sections of the metalens structure plane, the dual-wavelength achromatic focusing effect with the same focal length is realized. In addition, the holographic concept is adopted for polarization-dependent bifocal generation, in which the objective wave is originated from two foci that are respectively formed by two orthogonal polarization states of circularly polarized light, namely Left-handed circularly polarized (LCP) light and Right-handed circularly polarized (RCP) light. The incident light is considered as the reference light. The achromatic focusing and polarization-dependent bifocusing are numerically verified through simulations. The proposed design opens the path for the combination of multi-wavelength imaging and chiral imaging, which may find potential applications, such as achromatic optical devices and polarization-controlled biomedical molecular imaging systems.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical Imaging, Optical Sensing and Devices;Sensors;2023-03-07

2. Twelve-channel detection of spin and orbital angular momenta via dielectric metasurface;Optoelectronic Devices and Integration XI;2022-12-21

3. Perfect vortex beam generators enabled by fiber-tip metasurface;TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON);2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3