Enhanced Thermal Conductivity and Dielectric Properties of h-BN/LDPE Composites

Author:

He Lijuan,Zeng Junji,Huang Yuewu,Yang Xiong,Li Dawei,Chen Yu,Yang Xiangyu,Wang DongboORCID,Zhang Yunxiao,Fu Zhendong

Abstract

Low-density polyethylene (LDPE), as an excellent dielectric insulating material, is widely used in electrical equipment insulation, whereas its low thermal conductivity limits its further development and application. Hexagonal boron nitride (h-BN) filler was introduced into LDPE to tailor the properties of LDPE to make it more suitable for high-voltage direct current (HVDC) cable insulation application. We employed melt blending to prepare h-BN/LDPE thermally conductive composite insulation materials with different contents. We focused on investigating the micromorphology and structure, thermal properties, and electrical properties of h-BN/LDPE composites, and explained the space charge characteristics. The scanning electron microscope (SEM) results indicate that the h-BN filler has good dispersibility in the LDPE at a low loading (less than 3 phr (3 g of micron h-BN particles filled in 100g of LDPE)), as well as no heterogeneous phase formation. The results of thermal conductivity analysis show that the introduction of h-BN filler can significantly improve the thermal conductivity of composites. The thermal conductivity of the composite samples with 10 phr h-BN particles is as high as 0.51 W/(m·K), which is 57% higher than that of pure LDPE. The electrical performance illustrates that h-BN filler doping can significantly inhibit space charge injection and reduce space charge accumulation in LDPE. The interface effect between h-BN and the substrate reduces the carrier mobility, thereby suppressing the injection of charges of the same polarity and increasing the direct-current (DC) breakdown strength. h-BN/LDPE composite doped with 3 phr h-BN particles has excellent space charge suppression effect and high DC breakdown strength, which is 14.3% higher than that of pure LDPE.

Publisher

MDPI AG

Subject

General Materials Science

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3